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Multiple View Clustering Using a Weighted
Combination of Exemplar-Based Mixture Models

Grigorios F. Tzortzis and Aristidis C. Likas, Senior Member, IEEE

Abstract— Multiview clustering partitions a dataset into groups
by simultaneously considering multiple representations (views)
for the same instances. Hence, the information available in
all views is exploited and this may substantially improve the
clustering result obtained by using a single representation.
Usually, in multiview algorithms all views are considered equally
important, something that may lead to bad cluster assignments if
a view is of poor quality. To deal with this problem, we propose
a method that is built upon exemplar-based mixture models,
called convex mixture models (CMMs). More specifically, we
present a multiview clustering algorithm, based on training a
weighted multiview CMM, that associates a weight with each
view and learns these weights automatically. Our approach
is computationally efficient and easy to implement, involving
simple iterative computations. Experiments with several datasets
confirm the advantages of assigning weights to the views and the
superiority of our framework over single-view and unweighted
multiview CMMs, as well as over another multiview algorithm
which is based on kernel canonical correlation analysis.

Index Terms— Clustering, mixture models, multiview learning.

I. INTRODUCTION

THE MOST common approach for the machine learning
and data mining settings is to assume that data are rep-

resented in a single vector or graph space. However, in many
real-life problems multiview data arise naturally. Multiview
data are instances that have multiple representations (views)
from different feature spaces. Usually, these multiple views
are from different vector spaces or different graph spaces or
a combination of vector and graph spaces. The most typical
example is web pages. Web pages can be represented with
a term vector whose elements correspond to the occurrence
of certain words in the web page text, a hyperlink graph that
shows to which other web pages each web page points to and
also a term vector for the words in the anchor text. Another
example is scientific articles, which can be represented with
a term vector corresponding to the words appearing in the
abstract and introduction and also a citation graph.

The natural and frequent occurrence of multiview data has
raised interest in the so-called multiview learning. The main
challenge of multiview learning is to develop algorithms that
use multiple views simultaneously, given the diversity of the
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views. Most studies on this topic address the semisupervised
classification problem, and multiview classification algorithms
have often proven to utilize unlabeled data effectively and
substantially improve classification accuracy (e.g., [1]–[3]).

This paper focuses on multiview unsupervised learning
and particularly in multiview clustering. Multiview clustering
explores and exploits multiple representations simultaneously
in order to produce a more accurate and robust partitioning
of the data than single-view clustering. The intuition behind
this approach is that the different representations are more
informative regarding the correct partitioning of the dataset
than a single view. Therefore, by taking advantage of all the
available views, we expect to produce a better splitting of the
data. The available literature for this topic is growing fast (e.g.,
[4]–[11]), with encouraging results. Borrowing the terminol-
ogy of [9], there exist two approaches in multiview clustering:
centralized and distributed. Centralized algorithms simulta-
neously use all available views to cluster the dataset, while
distributed algorithms first cluster each view independently
from the others, using an appropriate single-view algorithm,
and then combine the individual clusterings to produce a final
partitioning.

Most multiview algorithms rely equally on every view in
order to compute a clustering, but the useful information
conveyed by the available views can vary significantly. For
example, one view may contain noise, or outliers, or be
irrelevant to the task in hand. Including such a view in the
partitioning process may result in performance degradation.
Identifying and removing such views beforehand is not easy
though. For this reason, we present a multiview centralized
clustering method that assigns different weights to the views
and learns those weights automatically. The weights reflect
the quality of each view and therefore affect its contribution
to the final clustering solution accordingly. Specifically, we
extend our previous framework [10], namely multiview convex
mixture models (CMMs), to accommodate weights for the
views.

Multiview CMMs generalize a special case of mixture
models, called CMMs1 (a.k.a. exemplar-based mixture mod-
els) [12], to data with multiple representations. They locate
exemplars in the dataset (i.e., instances that serve as the
representatives of the clusters) through a convex optimization
by equally considering all available views. Also, the different
statistical properties of the views are taken into account,
and good results have been achieved in [10]. The proposed

1We shall refer to CMMs as single-view CMMs whenever it is necessary
to make the distinction to their multiview counterparts explicit.
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weighted multiview CMM is a weighted combination of CMMs
(one for each view) that identifies exemplars in the dataset. It
incorporates most of the advantages of multiview CMMs, plus
the ability to spot irrelevant views through the weights. As we
shall see, this model has also a probabilistic explanation.

The experiments with our algorithm on noisy artificial
datasets and two real datasets demonstrate in most cases
a considerable improvement on the clustering performance
when compared to: 1) the single-view CMM [12] applied on
the individual views; 2) the single-view CMM that uses the
concatenation of the views; 3) the multiview CMM [10]; and
4) the multiview clustering method of [5] which first combines
the views through kernel canonical correlation analysis (Kernel
CCA) projection and then clusters the derived projections.
These results confirm the effectiveness of our model as well
as its ability to correctly measure the quality of the views and
adjust the weights so as to get good clustering solutions not
affected by the presence of noisy or noninformative views.

The rest of this paper is organized as follows. The next
section reviews related work, while Section III provides an
analysis on single-view and multiview CMMs. The proposed
algorithm follows in Section IV. The experimental evaluation
on artificial and real data is discussed in Section V. Finally,
Section VI concludes this paper.

II. RELATED WORK

Multiview learning in the semisupervised setting has been
introduced by Yarowsky [13] and Blum and Mitchell [1]. In
[13], a two-view word sense disambiguation algorithm was
described, which uses two classifiers that bootstrap each other.
Blum and Mitchel [1] introduced the co-training algorithm to
train a classifier from two representations. Their idea is to
train two learners on distinct views of the labeled data and
iteratively allow each learner to label the unlabeled instances
that predicts with the highest confidence. Assuming the learn-
ers are independent, the newly labeled instances may help the
other learner to improve its model. The co-training method was
modified in [14], so that an objective function that measures
the degree of agreement between the two views is optimized.
Zhou and Li [15] proposed co-training for regression. PAC
bounds on the error of co-training were given in [16] and
[17], showing that the disagreement of two learners in two
independent views upper-bounds the error rate. The co-EM
algorithm [18] is based on the co-training idea and is a variant
of EM for two-view semisupervised learning, for which many
extensions have been proposed [2], [3], [19].

Most of the existing work in multiview clustering follows
the centralized approach and extends well-known clustering
algorithms to the multiview setting. Bickel and Scheffer [4]
developed a two-view EM and a two-view k-means algorithm
under the assumption that the two views are independent. They
also studied the problem of mixture model estimation with
more than two views and showed that co-EM is a special
case of their formulation [20]. De Sa [7] proposed a two-
view spectral clustering algorithm that creates a bipartite graph
of the views and is based on the “minimizing-disagreement”
idea [21], [22]. This method also assumes that the views are

independent. An algorithm that generalizes the single-view
normalized cut to the multiview case and can handle both
directed and undirected graphs was introduced by Zhou and
Burges [11]. Their idea can be explained as a vertex-wise
mixture of Markov chains associated with different graphs and
is applicable to more than two views. Blaschko and Lampert
[5] projected the data onto the top directions obtained by
kernel CCA across the views and applied k-means to cluster
the projections. Finally, in [6] each of the two views was
assumed to be generated by a mixture of distributions and
CCA was employed to project the data to the subspace spanned
by the distributions’ means. Afterwards, a standard clustering
algorithm was used in this space to split the data. Theoretical
results were provided that guarantee that the method can
recover the correct clusters with high probability if an indepen-
dence assumption among the two views and a rank assumption
on the CCA matrix hold, as well as a separation condition.

Following the distributed approach, Long et al. [9] pro-
posed a general model for multiview unsupervised learning.
According to their model, the final partitioning of the data
is derived by minimizing an appropriate objective function
that measures how close the final clustering, based on all
views, is to the clustering of each single view with the
help of a mapping function. In [8], a matrix factorization
approach was adopted to reconcile the groups arising from
the individual views. Specifically, a matrix that contains the
partitioning of every individual view is created and then
decomposed to two matrices, the one showing the contribution
of those partitionings to the final “multiview” clusters, called
meta-clusters, and the other the assignment of instances to
the meta-clusters. Both [8] and [9] can handle any number
of views and representations from both vector and graph
spaces.

A machine learning problem that is closely related to
multiview clustering, although seemingly different, is unsu-
pervised multiple kernel learning, where multiple kernels are
available for the same instances (the dataset has only one view)
and an appropriate combination of those kernels is learned
within a clustering framework. If the kernel matrix is given
for each view, we can apply unsupervised multiple kernel
learning techniques to partition multiview data. Examples
of such algorithms are the ones based on the ideas of
maximum margin clustering [23]–[25] and local learning
clustering [26].

III. EXEMPLAR-BASED MIXTURE MODELS

This section briefly describes exemplar-based mixture mod-
els [12], also known as CMMs, since they consist a key part of
our new algorithm and also our previous multiview clustering
work [10] that is built upon CMMs and is extended by the
current framework.

A. CMMs

CMMs [12] are simplified mixture models that result in soft
assignments of data points to clusters and in the extraction
of representative exemplars from the dataset. When training
these models, which is done by maximizing the log-likelihood,
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all instances compete to become the “center” of the clusters
(i.e., cluster representatives-exemplars), since the number of
the CMM components is equal to the number of data points
and each component distribution is centered at a distinct
dataset point. In the end, the instances corresponding to the
components that have received during training the highest
priors are selected as exemplars and the remaining instances
are assigned to the “closest” exemplar. Note that the priors
of the components are the only adjustable parameters of a
CMM.

In detail, given a dataset X = {x1, x2, . . . , xN } , xi ∈ �d ,
the CMM distribution is Q(x) = ∑N

j=1 q j f j (x), x ∈ �d ,
where q j ≥ 0 denotes the prior probability of the j th
component, satisfying the constraint

∑N
j=1 q j = 1, and

f j (x) is an exponential family distribution, with its ex-
pectation parameter equal to the j th data point. Note that
the same exponential family is used for all components.
Taking into account the bijection between regular expo-
nential families and Bregman divergences [27], we write
f j (x) = Cϕ(x) exp(−βdϕ(x, x j )), with dϕ denoting the
Bregman divergence corresponding to the components’ dis-
tributions, Cϕ(x) being independent of x j , and β being
a constant controlling the sharpness of the components
[12].

A clustering is produced by maximizing the (exemplar-
based) dataset log-likelihood L(X; {q j}N

j=1), defined in (1),

over
{
q j

}N
j=1, s.t.

∑N
j=1 q j = 1

L
(
X; {q j

}N
j=1

)
= 1

N

N∑

i=1

log

⎡

⎣
N∑

j=1

q j f j (xi)

⎤

⎦

= 1

N

N∑

i=1

log

⎡

⎣
N∑

j=1

q j e
−βdϕ(xi ,x j )

⎤

⎦ + const.

(1)

If we define P̂(x) = 1/N , x ∈ X to be the empirical
dataset distribution, we can equivalently formulate the above
likelihood maximization problem in terms of the Kullback–
Leibler (KL) divergence among P̂(x) and Q(x), since their
KL distance is

D(P̂‖Q) = −
N∑

i=1

P̂(xi ) log Q(xi ) − H(P̂)

= −L
(
X; {q j

}N
j=1

)
+ const. (2)

where H(P̂) is the entropy of the empirical distribution P̂(x)
which does not depend on the parameters q j of the CMM.
Now, instead of maximizing (1), we can minimize (2). This
minimization problem is convex and can be solved with an
iterative algorithm, whose updates for the components’ prior
probabilities are given by

q(t+1)
j = q(t)

j

N∑

i=1

P̂(xi ) f j (xi )
∑N

j ′=1 q(t)
j ′ f j ′(xi )

(3)

and the algorithm is guaranteed to converge to the global
minimum as long as q(0)

j > 0,∀ j [12]. Note, that the prior
probability q j associated with data point x j is a measure of
how likely this point is to be an exemplar.

The ability of always being able to locate the global
optimum makes this model attractive, as it avoids the ini-
tialization and local optima problems of standard mixture
models, which require multiple executions of the EM algo-
rithm [28]. Moreover, in [12] a Gaussian CMM was found to
be experimentally superior to a fully parameterized Gaussian
mixture model, despite its smaller flexibility as q j are the
only parameters. Another important feature is that only the
pairwise data distances dϕ(xi , x j ) take part in the calcula-
tion of the priors, as Cϕ(xi) cancels out, thus the values
of the data points are not required if we are given the
distances.

Splitting the dataset into M disjoint clusters is done by
requiring the instances with the M highest q j values to serve
as exemplars and then assigning the remaining instances to
the exemplar with the highest posterior probability.

Finally, clustering with a CMM requires the selection of
an appropriate value for the constant β (0 < β < ∞).
It is possible to identify a reasonable range of β values
by determining a reference value β0. In [12], the following
empirical rule (4) has been adopted, achieving good results in
the experiments

β0 = N2 log N/

N∑

i, j=1

dϕ(xi , x j ). (4)

B. Multiview CMMs

Multiview CMMs [10] assume that the representations of
the instances in each view are generated by a CMM and aim
at locating good exemplars by considering all available views.
More specifically, if we are given a dataset with N instances
and V views, X = {x1, x2, . . . , xN }, where xi contains the
representations of the i th instance across the views, i.e., xi ={
x1

i , x2
i , . . . , xV

i

}
, xv

i ∈ �dv
, the mixture distribution of each

view is

Qv (xv ) =
N∑

j=1

q j f v
j (xv )

= Cϕv (x
v )

N∑

j=1

q j e
−βvdϕv (xv ,xv

j ), xv ∈ �dv
. (5)

Since the statistical properties of individual views may differ
substantially, different views are allowed to have component
distributions f v

j (xv ) from different exponential families. On
the other hand, as a clustering based on all views is pursued,
all Qv (xv ) share the same priors in order to interact.

Moreover, an empirical dataset distribution P̂v (xv ) =
1/N, xv ∈ {xv

1, xv
2, . . . , xv

N }, is associated with every view and
the multiview algorithm minimizes the sum of KL divergences
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(6) between P̂v (xv ) and Qv (xv ) across all views

min
q1,...,qN

s.t.
∑N

j=1 q j=1

{
V∑

v=1

D(P̂v‖Qv )

}

= min
q1,...,qN

s.t.
∑N

j=1 q j =1

{

−
V∑

v=1

N∑

i=1

P̂v (xv
i ) log Qv (xv

i )−
V∑

v=1

H(P̂v )

}

.

(6)

It is quite straightforward to see that the optimized objective
is convex, hence the global minimum is always found, and
the rule for updating the priors (7) is a generalization of the
single-view case. Once again, for the updates only the pairwise
distances in each view are required, as Cϕv (x

v
i ) cancels out

q(t+1)
j = q(t)

j

V

V∑

v=1

N∑

i=1

P̂v (xv
i ) f v

j (xv
i )

∑N
j ′=1 q(t)

j ′ f v
j ′(xv

i )
. (7)

The prior q j associated with the j th instance is a measure
of how likely this instance is to be an exemplar, taking into
account all views.

Splitting the dataset into M disjoint clusters is done by
identifying the instances with the M highest q j values (these
are the exemplars) and then assigning the remaining instances
to the exemplar with the highest posterior probability over all
views. Appropriate βv values are found in the range of an
empirically defined βv

0 value (8)

βv
0 = N2 log N/

N∑

i, j=1

dϕv

(
xv

i , xv
j

)
. (8)

IV. WEIGHTED MULTIVIEW CMMS

Motivated by the promising results of CMMs in [10], this
paper proposes an alternative centralized scheme to multiview
clustering, where weights are assigned to the views and
adjusted through training.

A. Model Description

From the objective (6) in Section III-B, it can be observed
that all views contribute equally to the sum, regardless of how
“good” each view is for the problem in hand. Our aim is
to locate exemplars in the dataset by allowing the views to
participate with different weights to the objective function,
measuring how “informative” the corresponding view is, and
by learning those weights automatically, i.e., as part of the
learning process. Such an approach generalizes the previous
one and could be helpful in cases where a view is irrelevant
to the clustering task, or contains noise.

To accomplish our objective, we introduce a weighted
combination of exemplar-based models. For the vth view, a
CMM Qv (xv ), of the same form as in (5), is defined and
a positive weight πv is associated with it. The views are
combined by summing the corresponding weighted CMMs.

In more detail, suppose we are given a dataset with N
instances and V views, X = {x1, x2, . . . , x N }, where xi =

{
x1

i , x2
i , . . . , xV

i

}
, xv

i ∈ �dv
. Our model, which we will refer

to as weighted multiview CMM, is given by

F
(

x =
{

x1, x2, . . . , xV
})

=
V∑

v=1

πv Qv (xv )

=
V∑

v=1

πv
N∑

j=1

q j f v
j (xv ), xv ∈ �dv

(9)

where

f v
j (xv ) = Cϕv (x

v )e−βvdϕv (xv ,xv
j ),

πv ≥ 0,

V∑

v=1

πv = 1, q j ≥ 0,

N∑

j=1

q j = 1.

Note the imposed constraints on the weights πv. Due
to these restrictions, F(x) has a probabilistic interpretation.
Specifically, it is a mixture model whose number of compo-
nents is equal to the number of the views and each component
is a CMM Qv (xv ), corresponding to the vth view. Hence, the
weights can also be seen as the prior probabilities of the views
under the mixture model.

The above formulation has some very important charac-
teristics. To capture the diversity among the views, they are
allowed to have distributions f v

j (xv ) coming from different
exponential families, i.e., have different βv values and Breg-
man divergences dϕv . For example, a Gaussian CMM can be
used for one view and a Bernoulli CMM for another. Since a
CMM is used for each view, all instances will be considered
as possible cluster centroids (i.e., exemplars) during training.
Moreover, the priors q j are the same across all views, to allow
the extraction of representative exemplars based on every view.
Therefore, an instance whose corresponding prior q j has a
high value will more or less be a good exemplar for all views.
Finally, a low πv value indicates that view v conveys little
information regarding the partitioning of the dataset.

B. Model Training and Multiview Clustering

Since F(x) can be viewed as a mixture model, to partition
the dataset X we must maximize the log-likelihood (10)
w.r.t. the parameters {πv}V

v=1,
{
q j

}N
j=1, s.t. the constraints

∑V
v=1 πv = 1,

∑N
j=1 q j = 1. It must be stressed that, in

contrast to multiview CMMs [10], this optimization task
is not convex due to the introduction of the weights πv .
However, we hope to compensate for the lost convexity by
the ability to estimate different weights for the views

L
(
X; {πv

}V
v=1 ,

{
q j

}N
j=1

)
=

N∑

i=1

log
V∑

v=1

πv Qv (xv
i )

=
N∑

i=1

log

⎛

⎝
V∑

v=1

πv
N∑

j=1

q j f v
j (xv

i )

⎞

⎠ .

(10)

Local maxima of the log-likelihood can be found by
applying the EM algorithm [28]. This algorithm uses an
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initial guess for the parameters and iteratively adjusts them,
such that the likelihood always increases until a local optimum
is reached. Our model has only prior probabilities that can be
adjusted, and hence initializing them uniformly and avoiding
multiple restarts for EM is a natural choice (this approach is
followed in the experiments), i.e., πv(0) = 1/V , q(0)

j = 1/N .
Of course, if prior knowledge for the quality of the views
exists, this can be directly incorporated into the optimization
by initializing πv accordingly. To briefly illustrate the steps
of EM, define {X,Z} to be the complete dataset, where
Z = {z1, z2, . . . , zN } contains the latent variables indicating
the mixture component responsible for generating each
instance, i.e., zi ∈ {1, 2, . . . , V }. The analytical derivation of
the EM equations can be found in the Appendix.

E-step: In practice, we are not given the complete dataset
but only the observations X. Our state of knowledge for the
latent variables is described through the posterior probabilities
P(zi = v|xi ) (11), which at iteration t are calculated ∀i ∈
{1, 2, . . . , N},∀v ∈ {1, 2, . . . , V } as

P(t)(zi = v|xi ) = πv(t)Qv(t)(xv
i )

∑V
v=1 πv(t)Qv(t)(xv

i )
. (11)

M-step: The posterior probabilities of the E-step are useful
in estimating new values for the parameters during the M-step.
By setting to zero the derivative of the constrained complete
dataset log-likelihood expectation (23), under the posterior
probabilities distribution, w.r.t. {πv }V

v=1,
{
q j

}N
j=1 and a little

manipulation, we get the updates for the parameters (12)
and (13)

πv(t+1) = 1

N

N∑

i=1

P(t)(zi = v|xi ) (12)

q(t ′+1)
j = q(t ′)

j

N

N∑

i=1

V∑

v=1

P(t)(zi = v|xi )
f v

j (xv
i )

∑N
j ′=1 q(t ′)

j ′ f v
j ′(xv

i )
.

(13)

Some remarks on the optimization process, whose pseudo-
code is illustrated in Algorithm 1, follow. First, the new
estimation q(t ′+1)

j depends on the previous value q(t ′)
j ; there-

fore, a nested loop in the M-step of the EM algorithm is
required to perform multiple updates on q j for the same set
of posterior probability values in order to get q(t+1)

j . This
loop finishes when the change on q j values between two
iterations is less than a small value ε′ (line 21). Second,
EM terminates when the likelihood between consecutive pairs
of E and M steps changes less than a small value ε (line
24). Third, we must explicitly incorporate into the calcula-
tion of the posterior probabilities (11) the Cϕv (x

v
i ) values

(for the q j estimations (13) the Cϕv (x
v
i ) values still cancel

out). Hence, the pairwise distances alone do not suffice to
compute the updates, and the dataset instances are required
in the general case, contrary to the single-view and mul-
tiview CMMs, but for certain distributions f v

j (xv ) this is
not necessary, as demonstrated in the experimental section
for the Gaussian distribution. Fourth, the same empirical

Algorithm 1 EM for Weighted Multiview CMMs
Input: Multiview dataset X = {x1, x2, . . . , x N }, where

xi =
{

x1
i , x2

i , . . . , xV
i

}

Output: Model parameter estimation:
{
πv

}V
v=1,

{
q j

}N
j=1

// Initialize the parameters.
1: Set πv(0) = 1/V , ∀v = 1, . . . , V
2: Set q(0)

j = 1/N , ∀ j = 1, . . . , N
3: Set t = 0
4: repeat
5: // E-step.
6: for i = 1 to N do
7: for v = 1 to V do
8: P(t)(zi = v|x i ) = πv(t) Qv(t)(xv

i )
∑V

v=1 πv(t) Qv(t)(xv
i )

= πv(t) ∑N
j=1 q(t)

j f v
j (xv

i )
∑V

v=1 πv(t)
∑N

j=1 q(t)
j f v

j (xv
i )

9: end for
10: end for
11: // M-step.
12: for all πv , v = 1 to V do // Update the weights πv

13: πv(t+1) = 1
N

∑N
i=1 P(t)(zi = v|xi )

14: end for
15: Set t ′ = t
16: repeat // Update the priors q j
17: for all q j , j = 1 to N do

18: q(t ′+1)
j =

q(t ′)
j
N

∑N
i=1

∑V
v=1 P(t)(zi = v|x i )

f v
j (xv

i )
∑N

j ′=1 q(t ′)
j ′ f v

j ′ (x
v
i )

19: end for
20: t ′ = t ′ + 1
21: until

∑N
j=1

∣
∣
∣q

(t ′)
j − q(t ′−1)

j

∣
∣
∣ < ε′

22: t = t + 1

23: Set
{

q(t)
j

}N

j=1
=

{
q(t ′)

j

}N

j=1

24: until

∣
∣
∣
∣L

(

X;
{
πv(t)

}V

v=1
,
{

q(t)
j

}N

j=1

)

−L

(

X;
{
πv(t−1)

}V

v=1
,
{

q(t−1)
j

}N

j=1

)∣
∣
∣
∣ < ε

25: return
{
πv

}V
v=1 =

{
πv(t)

}V

v=1
,
{
q j

}N
j=1 =

{
q(t)

j

}N

j=1

βv
0 values (8) as in Section III-B can be adopted to guide

the search for appropriate βv values. Finally, it is obvious that
the view weights πv are determined automatically during the
M-step.

If we wish to split the dataset X into M disjoint clusters
C1, C2, . . . , CM , after EM termination, we must select the
instances that will act as exemplars. For this purpose, the
instances with the M highest q j values are chosen, denoted
by the set XE = {

xE
1 , xE

2 , . . . , x E
M

} ⊂ X. The remaining
N − M instances are assigned to cluster Ck , associated
with the kth exemplar, that has the largest posterior prob-
ability P(Ck |xi ) (14) (for the proof, see the Appendix).
In (14), we refer to the prior and component distribution
of the vth view CMM corresponding to exemplar xE

k , as
q E

k and f v E
k (xv ) respectively. The cluster assignments are

given by (15)

P(Ck |xi ) = q E
k

∑V
v=1 πv f v E

k (xv
i )

∑V
v=1 πv

∑N
j=1 q j f v

j (xv
i )

(14)



1930 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 12, DECEMBER 2010

Ck =
{

xE
k

}
∪
{

xi

∣
∣
∣P(Ck |xi )> P(Cl |xi ),∀l �=k, x i /∈ XE

}
.

(15)

C. Additional Aspects

If the data points of each view are mapped from input space
to a higher dimensional feature space, through a nonlinear
transformation φv , our method can be readily applied to the
mapped data

{
φ1(x1

i ), φ
2(x2

i ), . . . , φ
V (xV

i )
}
, i = 1, 2, . . . , N

and thus perform multiview clustering in feature space. By
representing the instances in a new space, a clearer group
structure can emerge. It is a very common practice in feature
space clustering that the mapping function φv is not explicitly
defined. Usually, a kernel function K v (xv

i , xv
j ) is used, which

is applied to the input space instances and directly provides
the inner products in feature space, and a kernel matrix
Kv ∈ �N×N , where Kv

i j = φv(xv
i )

T φv(xv
j ) = K v (xv

i , xv
j )

is built. Hence, if the required calculations involve only inner
products in feature space, there is no need to know φv . This is
the case for our approach when considering Gaussian CMMs
in the feature space of each view, as dϕv (φ

v (xv
i ), φ

v(xv
j )) =

‖φv(xv
i ) − φv(xv

j )‖2 = Kv
ii + Kv

j j − 2Kv
i j . Consequently,

the required pairwise distances are expressed in terms of the
values of the kernel matrices. This also makes our method
directly applicable for unsupervised multiple kernel learning
[23], in case we are given multiple kernels for the instances
of a single-view dataset and wish to find an appropriate
combination of the kernels that clusters the data efficiently,
i.e., our algorithm will treat each kernel as being a distinct
view, will compute the pairwise distances as shown above,
and will obtain a combination of the kernels through the
weights πv .

As for the complexity of the EM for our model, the
calculation of the posteriors P(zi = v|xi ) requires O(N2 V )
scalar operations, while the updates on the weights πv and
the priors q j cost O(NV ) and O(N2V ) scalar operations,
respectively. Assuming τ EM iterations are performed until
convergence and τ ′ iterations in each nested loop of the M-
step when estimating the priors q j , the overall complexity
is O(N2V τ + NV τ + N2V ττ ′) = O(N2V ττ ′). Finally, if
we are not given the pairwise distances dϕv (x

v
i , xv

j ) of each
view, their computation usually costs an extra O(N2V d) scalar
operations, where d = max{d1, d2, . . . , dV }.

V. EMPIRICAL EVALUATION

A. Experimental Setup

The performance of the weighted multiview CMM is studied
on both synthetic and real data. The real datasets are a
collection of academic web pages and a set of images on
Internet pages, where multiple views occur naturally.

Our focus is to compare the proposed method to multiview
CMMs [10] and to investigate whether assigning different
weights to views is helpful. Moreover, a single-view CMM
is applied to each of the individual views of the datasets to
examine whether multiple views boost the clustering quality.
Note that our new algorithm and multiview CMMs reduce
to the single-view CMMs of Section III-A when only one

view is present. Since the easiest way to partition data with
multiple representations is to concatenate the views (e.g., by
appending the vectors) and then apply a single-view algorithm
on this concatenation, the single-view CMM is also tested
using the concatenated view, in order to explore whether the
weighted multiview approach leads to improved performance.

Gaussian CMMs are adopted for all cases and views,
i.e., dϕv (x

v
i , xv

j ) = ‖xv
i − xv

j‖2. For Gaussian components,

Cϕv (x
v
i ) = (βv/2π)dv /2, hence Cϕv (x

v
i ) does not depend on

the instance values xv
i . Therefore, the pairwise distances along

with each view dimensionality dv suffice to calculate the
updates for our method (see (11)–(13)) without needing the
instance values. In our experiments, we have removed Cϕv (x

v
i )

from the update rule (11) as if it is canceling out. This is done,
as we wish to treat problems where only the pairwise distances
are available for each view and not the instances themselves.
In such cases, the dimensionality of the views is not known in
order to compute Cϕv (x

v
i ). Such problems are very common

in practice and we would like to test the proposed algorithm
under this setting. Also, for our method a single execution
of the EM algorithm has been always performed using a
uniform initialization (πv(0) = 1/V , q(0)

j = 1/N), since no
prior information for the quality of the views exists in any of
the datasets.

Moreover, in each experiment the partition returned by all
the aforementioned clustering methods is used to initialize an
execution of the kernel k-means algorithm [29]. Such a run
is conducted in order to determine whether there is room for
improving CMMs results, or they are already close to a very
good solution that cannot be further fine-tuned. A linear kernel,
in order to be consistent with the choice of dϕv (x

v
i , xv

j ) =
‖xv

i −xv
j‖2, is selected for each view and since kernel k-means

is a single-view method, a final kernel is built as a weighted
sum of the individual view kernels. Those weights when fine-
tuning our algorithm are the final πv values, while for the
multiview CMM they are set equal to 1/V . For the single-view
cases no weight is used. Note that for the concatenated case
the linear kernel is calculated on the appended view vectors.

To further explore the potential of our method, we compare
it to a multiview algorithm from the literature, which is built
upon kernel CCA2 [5]. This approach simultaneously uses all
views to find appropriate projection directions that maximize
the correlation between the projected views and then applies
k-means to the projections of one of the views to get a
partitioning of the instances. For the experiments with kernel
CCA, we use the algorithm implementation made available
by the authors of [5] and adopt a very similar experimental
protocol as in [5]. Specifically, the number of projection axes
is set equal to the cluster number, a linear kernel is selected
(for the same reason as for kernel k-means), the kernel CCA
regularization parameters are determined automatically using
grid search (where kernel CCA is rerun with a new set of para-
meter values) and an appropriate criterion (see [5] for details),
and k-means is restarted 30 times with random initializations
and the run with the smallest k-means objective is kept. Note

2For simplicity, we shall refer to the clustering framework of [5] as kernel
CCA in the experiments, although kernel CCA is only a part of this method.
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Fig. 1. Examples of the synthetic dataset: (a) original dataset generated from three 2-d Gaussian distributions, (b) one of the “corrupted” views for m = 50
and zero translation. The circled point in (a) (blue class) is wrongly represented here as belonging to the black class (circled point), and (c) one of the noisy
views.

TABLE I

ARTIFICIAL-NOISE-FREE DATASETS RESULTS WITH GAUSSIAN CMM-BASED METHODS, IN TERMS OF ENTROPY AND THREE CLUSTERS.

m = 50, βv = βv
0 . THE “YES,” “NO” COLUMNS INDICATE WHETHER KERNEL k-MEANS FINE TUNING IS APPLIED OR NOT. ALSO

RESULTS WITH KERNEL CCA ARE REPORTED

Two views Three views Four views Five views

Kernel k-means Kernel k-means Kernel k-means Kernel k-means

No Yes No Yes No Yes No Yes

Worst single-view CMM 0.300 0.300 0.572 0.300 0.572 0.303 0.572 0.303

Best single-view CMM 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299

Concatenated view CMM 0.322 0.320 0.265 0.262 0.147 0.191 0.130 0.124

Multiview CMM 0.289 0.320 0.133 0.262 0.097 0.195 0.081 0.124

Weighted multiview CMM 0.289 0.326 0.176 0.266 0.086 0.191 0.060 0.124

Kernel CCA—worst view 0.745 0.766 0.766 0.766

Kernel CCA— best view 0.743 0.741 0.739 0.735

TABLE II

INDICATIVE WEIGHTS ASSIGNED TO THE VIEWS BY THE WEIGHTED

MULTIVIEW CMM FOR THE ARTIFICIAL-NOISE-FREE DATASETS

Two views Three views Four views Five views
View 1 0.502 0.336 0.251 0.201

View 2 0.498 0.333 0.249 0.199

View 3 - 0.331 0.248 0.198

View 4 - - 0.252 0.201

View 5 - - - 0.201

that the grid search steps grow exponentially with the number
of views and, together with the fact that kernel CCA requires
solving a generalized eigenvalue problem (which is a timely
procedure), make the application of this method prohibitive
for datasets with many views. Also note, that since it is
not clear which view’s projections to use to get the final
clustering with k-means, we cluster each of the available
views’ projections and report results for the best and worst
performing ones.

For each dataset, the ground-truth class of every instance is
available and the number of clusters is set equal to the true
class number, unless stated otherwise. To assess the returned
clusters quality, the average entropy metric [4], [7], [20],
which measures the impurity of the partitions w.r.t. the ground
truth classes, is used. Average entropy is given by (16), where
N is the dataset size, M the number of clusters, c the number

of classes, n j
i the number of points in cluster i from class j ,

and ni the size of the i th cluster. Lower average entropy values
indicate that each cluster consists of instances belonging to the
same class

H =
M∑

i=1

ni

N

⎛

⎝−
c∑

j=1

n j
i

ni
log

n j
i

ni

⎞

⎠ . (16)

It must be emphasized that in all tested methods the ground-
truth labels have not been used during training. They are used
only to compute the performance measures after training.

B. Synthetic Datasets

The weighted multiview CMM is first tested on a dataset
with 700 instances, generated from three 2-D Gaussian
distributions (Fig. 1(a)). Each of the distributions represents
a distinct class and this serves as the ground truth. From this
original dataset, seven artificial views were created. For each
of the first five views, as a first step all original instances were
equally translated and then m of them were randomly selected
and replaced by new ones. To replace each of the m instances,
we randomly picked a class different from the one that the
instance belongs to in the original dataset, and generated a
new point from the corresponding class distribution. Therefore
each view is “corrupted,” as according to the ground truth m
points belong to an incorrect class. For the experiments we
set m = 50 and an example is illustrated in Fig. 1(b). For the
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TABLE III

ARTIFICIAL-NOISY DATASETS RESULTS WITH GAUSSIAN CMM-BASED METHODS, IN TERMS OF ENTROPY AND THREE CLUSTERS. m = 50, βv = βv
0 .

THE “YES,” “NO” COLUMNS INDICATE WHETHER KERNEL k-MEANS FINE TUNING IS APPLIED OR NOT.

ALSO RESULTS WITH KERNEL CCA ARE REPORTED

Two views Three views Four views Five views
+ noisy views + noisy views + noisy views + noisy views

Kernel k-means Kernel k-means Kernel k-means Kernel k-means
No Yes No Yes No Yes No Yes

Worst single-view CMM 0.935 0.943 0.935 0.943 0.935 0.943 0.935 0.943

Best single-view CMM 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299

Concatenated view CMM 0.960 0.748 0.477 0.631 0.472 0.496 0.377 0.402

Multiview CMM 0.385 0.751 0.655 0.631 0.147 0.478 0.576 0.601
Weighted multiview CMM 0.256 0.281 0.220 0.242 0.127 0.206 0.116 0.157
Kernel CCA—worst view 1.001 1.078 1.078 1.078

Kernel CCA—best view 0.833 0.814 0.800 0.745

TABLE IV

INDICATIVE WEIGHTS ASSIGNED TO THE VIEWS BY THE WEIGHTED MULTI-VIEW CMM, FOR THE ARTIFICIAL-NOISY DATASETS

Two views Three views Four views Five views
+ noisy views + noisy views + noisy views + noisy views

View 1 0.442 0.304 0.224 0.182
View 2 0.435 0.300 0.223 0.181
View 3 - 0.299 0.222 0.180
View 4 - - 0.226 0.184
View 5 - - - 0.183

Noisy view 1 0.064 0.051 0.054 0.046
Noisy view 2 0.059 0.046 0.051 0.044

remaining two views, a high amount of zero-mean Gaussian
noise was added to the original instances (noise std = 2.5),
making it hard to separate the classes (Fig. 1(c)).

Individual clusterings of the five views will probably mis-
classify all m misplaced instances. We wish to examine
whether the simultaneous consideration of multiple views
helps to “fix” some of these errors. The noisy views contain
little information for the problem and we want to explore how
that fact is reflected by the weights πv . Note that the original
dataset is correctly separated by a CMM, i.e., H = 0.

Four noise-free datasets were constructed, including 2, 3, 4,
and 5 “corrupted” views. Also, four noisy datasets were cre-
ated by adding the two noisy views to the noise-free datasets.
Results for the noise-free and noisy datasets are reported in Ta-
bles I and III, respectively, for three clusters and βv = βv

0 (8).
From Table I we see that the multiview methods (in the

following Section V-B, when writing multiview methods we
refer to the CMM-based ones and not kernel CCA) always
outperform the best single view (apart from one case), indi-
cating that multiple views contribute to the correction of the
errors in the individual views. The concatenated view is always
inferior or equal to at least one of the multiview approaches.
When no kernel k-means fine-tuning is used, both multiview
approaches are ahead. Therefore, appending the view vectors
is not a good strategy, which is something widely mentioned
in the literature (e.g., [7], [20]).

Moreover, from Table II we observe that our new algorithm
roughly assigns the same weights to the views, which is
something expected given that all views are of similar quality
and which makes the method behave like the multiview CMM.
This observation is in accordance with the results, where the
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Fig. 2. View weights (average and std over 10 trials) assigned by the weighted
multiview CMM to datasets consisting of two noise-free and two noisy views
(both with the same amount of noise) for various noise levels. On the right,
the weight averages and std for a dataset, where views with different amounts
of noise simultaneously exist, are shown.

two methods are of similar performance. Also, the multiview
schemes take advantage of every available view, as the entropy
constantly drops with the increase of the views number. Note
that kernel k-means always degrades the performance of the
multiview settings. Finally, kernel CCA3 is systematically
beaten by a large margin by all CMM-based methods and its
performance barely increases as more views become available,
highlighting the strength of CMMs.

3We stress that in none of the experiments of this or the following sections
we have applied kernel k-means to the partitions returned by kernel CCA.
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TABLE V

WEBKB RESULTS WITH GAUSSIAN CMM-BASED METHODS FOR βv = βv
0 AND βv = α∗βv

0 , IN TERMS OF ENTROPY AND SIX CLUSTERS. THE “YES,”

“NO” COLUMNS INDICATE WHETHER KERNEL k-MEANS FINE TUNING IS APPLIED OR NOT. ALSO RESULTS WITH KERNEL CCA ARE REPORTED

βv = βv
0 βv = α∗βv

0
Kernel k-means Kernel k-means

No Yes No Yes

Single-view CMM—text 1.536 1.513 1.485 (α∗ = 1.5) 1.492 (α∗ = 1.5)

Single-view CMM—anchor text 1.554 1.471 1.440 (α∗ = 3.5) 1.329 (α∗ = 3.5)

Concatenated view CMM 1.559 1.537 1.481 (α∗ = 1.7) 1.490 (α∗ = 1.7)

Multiview CMM 1.498 1.450 1.396 (α∗ = 1.5) 1.316 (α∗ = 1.5)

Weighted multiview CMM 1.431 1.427 1.299 (α∗ = 3.5) 1.307 (α∗ = 3.5)

Kernel CCA—text 1.411

Kernel CCA—anchor text 1.309

When noise comes into play, the true potential of the
proposed algorithm becomes apparent, since it achieves by
far the least entropy in all cases. This happens because it
assigns very small weights to the noisy views (as can be
seen in Table IV), hence they are almost eliminated from the
clustering process whereas the noise-free views are equally
treated. Therefore, this method works as if the noise does
not exist. Indeed, note that the weighted multiview CMM
performance is relatively close to that of the noise-free setting.
The advantages of automatically determining the view weights
are now clearly exposed, as the method exhibits robustness to
noise and to noninformative views in general.

In contrast, the multiview CMM splits are greatly affected
by the noise, due to the equally weighted views, and are
considerably inferior to the corresponding noise-free ones and
even to those of the best single view (which is a noise-free
view). Kernel CCA is also affected by the presence of noise,
as the entropy has increased compared to that of Table I and
is largely outperformed by the weighted multiview CMM,
demonstrating the need for methods that distinguish noisy
views. Once again, it is beaten by the multiview CMM and
the best single view. Additionally, the time concerns regarding
kernel CCA (see Section V-A) became evident when handling
more than four views, when it took several hours to find
the clusters, while our framework required a few minutes.
Finally, similar conclusions as above can be drawn regarding
the concatenated view and the application of kernel k-means.

To further investigate the behavior of the newly proposed
algorithm, we studied the sensitivity of the weights on the
noise level present on the views. Analytically, we created
datasets for various amounts of noise which each consisted
of two noise-free views (for all cases these are the ones used
for the two-view experiment above) and two noisy views with
the same amount of noise. To create the noisy views, random
zero-mean Gaussian noise was added to the original dataset,
with different standard deviation for the various noise levels.
In order to alleviate randomness in our experiments, for each
noise level we created 10 datasets and repeated the clustering.
The average and standard deviation of the weights of the four
views over 10 runs are depicted in Fig. 2. It can be seen
that, as the noise increases, the difference among the noise-
free views and noisy views weights becomes greater, which
is something that we would naturally expect. Note that for

TABLE VI

INDICATIVE WEIGHTS ASSIGNED TO THE VIEWS BY THE WEIGHTED

MULTIVIEW CMM FOR THE WEBKB DATASET WHEN βv = βv
0

βv = βv
0

Text view 0.126

Anchor text view 0.874

std = 0.3, the weight values of the noisy views approach those
of the noise-free ones as a low amount of noise is present,
while for std = 2.5 the noisy views weights have a value
around 0.06.

Finally, a dataset that combines views with two different
noise levels (two views for each noise level) and two noise-free
views was constructed. The average and standard deviation of
the weights over 10 trials are shown on the right-most corner
of Fig. 2. We observe that the less informative a view is, the
smaller its weight. Also, views with the same amount of noise
are assigned very similar weights. From Fig. 2, we conclude
that the new method identifies noisy views and treats them
according to their noise level.

C. WebKb Dataset

The first real-world example is a popular collection for
testing multiview algorithms [1], [3], [4], [7], [20] made up
of the computer science department web pages from various
universities. Here, the version described in [20] is used,
consisting of six classes (course, department, faculty, project,
staff, and students) and two views. The views are the text of
the pages and the anchor text of all inbound links. As all web
pages do not have inbound links, such instances were removed
from the dataset, resulting in 2076 instances with both views
available.

Term frequency inverse document frequency (tfidf) vectors
were constructed for each view and normalized to unit length,
so that the squared Euclidean distances of the Gaussian CMMs
reflect the cosine similarity, which is usually employed to
document clustering. The number of clusters was always
set to six. Experiments with the CMM-based methods were
performed for βv = βv

0 (8). We also considered other βv

values for each tested method, by setting βv = αβv
0 and

repeating the clustering for several α values. The value of
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TABLE VII

INTAD RESULTS WITH GAUSSIAN CMM-BASED METHODS FOR βv = βv
0 , IN TERMS OF ENTROPY AND DIFFERENT NUMBER OF CLUSTERS. THE “YES,”

“NO” COLUMNS INDICATE WHETHER KERNEL k-MEANS FINE TUNING IS APPLIED OR NOT. ALSO RESULTS WITH KERNEL CANONICAL CORRELATION

ANALYSIS ARE REPORTED

Two clusters Four clusters Six clusters
Kernel k-means Kernel k-means Kernel k-means

No Yes No Yes No Yes

Worst single-view CMM 0.517 0.497 0.513 0.474 0.478 0.460

Best single-view CMM 0.366 0.382 0.316 0.314 0.366 0.344

Concatenated view CMM 0.496 0.496 0.489 0.489 0.472 0.474

Multiview CMM 0.481 0.362 0.393 0.284 0.393 0.290

Weighted multiview CMM 0.468 0.349 0.403 0.347 0.404 0.267
Kernel CCA—worst view 0.517 0.425 0.389

Kernel CCA—best view 0.459 0.386 0.343

TABLE VIII

INTAD RESULTS WITH GAUSSIAN CMM-BASED METHODS FOR βv = α∗βv
0 IN TERMS OF ENTROPY AND DIFFERENT NUMBER OF CLUSTERS.

THE “YES,” “NO” COLUMNS INDICATE WHETHER KERNEL k-MEANS FINE TUNING IS APPLIED OR NOT. ALSO RESULTS WITH

KERNEL CCA ARE REPORTED

Two clusters Four clusters Six clusters
Kernel k-means Kernel k-means Kernel k-means

No Yes No Yes No Yes

Worst single-view CMM
0.517 0.497 0.472 0.460 0.450 0.422

(α∗ = 1) (α∗ = 1) (α∗ = 1) (α∗ = 1) (α∗ = 1.2) (α∗ = 1.2)

Best single-view CMM
0.366 0.382 0.316 0.314 0.353 0.318

(α∗ = 1) (α∗ = 1) (α∗ = 1) (α∗ = 1) (α∗ = 3) (α∗ = 3)

Concatenated view CMM
0.462 0.456 0.391 0.356 0.402 0.366

(α∗ = 2) (α∗ = 2) (α∗ = 0.5) (α∗ = 0.5) (α∗ = 0.5) (α∗ = 0.5)

Multiview CMM
0.386 0.288 0.362 0.324 0.339 0.283

(α∗ = 1.5) (α∗ = 1.5) (α∗ = 1.2) (α∗ = 1.2) (α∗ = 1.2) (α∗ = 1.2)

Weighted multiview CMM
0.337 0.299 0.357 0.295 0.331 0.271

(α∗ = 3.5) (α∗ = 3.5) (α∗ = 3) (α∗ = 3) (α∗ = 1.2) (α∗ = 1.2)

Kernel CCA—worst view 0.517 0.425 0.389

Kernel CCA—best view 0.459 0.386 0.343

α (denoted as α∗) that yielded the least entropy was selected
as the best solution and its results are reported here. This was
done in order to show that the results can be possibly improved
by trying βv values around βv

0 . Note that a common value
α was used for all the views in the multiview algorithms.
When applying kernel k-means, the βv values already picked
by the CMMs were retained. Obviously, for kernel CCA no
βv parameter exists for fine-tuning.

From Table V, it is apparent that the proposed clustering
algorithm is beaten only by kernel CCA and only when βv =
βv

0 . It is superior though when βv is fine-tuned, demonstrating
that gains in performance are possible by searching around
βv

0 and that it is a strong competitor amongst the literature
multiview approaches. Compared to the multiview CMM,
the gap in performance mainly emanates from the different
view weights. Table VI contains the weights returned by the
weighted multiview CMM when βv = βv

0 , where a higher
value is given to the anchor text view. Note that our algorithm
achieves its best entropy (1.299) for the optimum βv and with
no kernel k-means postprocessing (fourth column). This is
lower than the multiview CMM best (1.316), which is achieved
for the optimum βv with kernel k-means (fifth column). This
indicates that for WebKb our method provides higher gains,

without needing fine-tuning of the returned clusters. The mul-
tiview approaches are always ahead of the single views and the
concatenated view, demonstrating once again the advantages
of incorporating multiple views to the clustering task and the
inefficiency of naive vector merging. The concatenated view
in most cases is even worse than the single views. Finally, for
βv = βv

0 kernel k-means improves the results, while for the
best βv it does so in half of the cases.

D. Internet Advertisement Dataset

The Internet advertisement dataset (Intad)4 contains im-
ages from various web pages that are characterized either
as advertisements or non-advertisements (i.e., two classes).
The instances are described in terms of six views, which
are the geometry of the images (width, height, aspect ratio),
the phrases in the url of the pages containing the images
(base url), the phrases of the images’ url (image url), the
phrases in the url of the pages the images are pointing at
(target url), the anchor text, and the text of the images’ alt
(alternative) html tags (alt text). All views have binary features,

4Available from the UCI repository: http://www.ics.uci.edu/∼mlearn/
MLRepository.html
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TABLE IX

INDICATIVE WEIGHTS ASSIGNED TO THE VIEWS BY THE WEIGHTED

MULTIVIEW CMM FOR THE INTAD DATASET WHEN βv = βv
0

Two clusters Four clusters Six clusters
Image url view 0.047 0.047 0.047

Base url view 0.237 0.237 0.237

Target url view 0.355 0.355 0.355

Alt text view 0.361 0.361 0.361

apart from the geometry view whose features are continuous.
Details for the construction of the dataset can be found in
[30]. Note that there are several missing views in this dataset.
Specifically, the anchor text view is missing from 94% of the
images and the geometry view from 30%, therefore we decided
not to include those views in our empirical evaluation. After
removing instances that were missing any of the other four
views, 2369 images remained for the experiments.

Similarly to WebKb, we generated normalized tfidf vectors
to reflect the cosine similarity and performed experiments both
for βv = βv

0 (8) and βv = α∗βv
0 . Different cluster numbers

were tried, specifically two, four and six.
The results in Tables VII and VIII5 show that one of the two

CMM-based multiview methods achieves the least entropy in
most cases (in 8 out of 12). In the other cases, the best single
view (two times for βv = βv

0 and one for βv = α∗βv
0 ) and

kernel CCA (only once, for six clusters and βv = βv
0 ) are

superior. Note that both these multiview approaches are always
ahead of the worst single view. Therefore, for the Intad dataset,
if we test the views one by one, we might sometimes get a
better partitioning than when simultaneously using all of them,
particularly for βv = βv

0 . The two aforementioned multiple
view algorithms, though, provide higher quality solutions more
systematically, especially if the βv values are fine-tuned, since
in Table VIII the best single view is ahead for only one setting.
It is important to stress that kernel CCA is inferior to both the
other two multiview approaches when βv = α∗βv

0 and also
for βv = βv

0 , when kernel k-means is applied. Moreover, it
is worse than the best single-view CMM most of the times
(in 9 out of 12). This result shows that CMMs are a powerful
clustering technique and support our decision to adopt them
for a multiview framework.

Once again, the concatenated view is always inferior to the
multiview schemes (only kernel CCA performs worse in a
few cases) and also to the best single view (sometimes even
to the worst single view). The proposed algorithm is superior
to multiview CMMs for 8 out of 12 cases and is the best
overall performer 6 times out of 12, contrary to the multiview
CMMs two times. The difference among the two methods is
greater in Table VIII, where the weighted multiview CMM
is ahead for all but one case. As an indication of how our
algorithm handles this dataset, in Table IX the view weights
for the run with βv = βv

0 are given. Note that their value is the
same for all cluster numbers, since it does not depend on this
parameter. Finally, the application of kernel k-means seems to
be beneficial for all cases.

5The values reported for kernel CCA are the same in both tables, since for
kernel CCA no βv parameter to fine tune exists.

VI. CONCLUSION AND FUTURE WORK

We have introduced the weighted multiview CMM, which
is a weighted combination of exemplar-based models that
identifies exemplars in the dataset by simultaneously consid-
ering multiple representations of the instances. Our method
can be interpreted as a mixture model, whose components
are CMMs (one for each view). Its main advantages are
the assignment of different weights to the views, which are
automatically determined and provide robustness against noisy
or low quality views, as well as the ability to handle views
with different statistical properties. Also, it is computationally
efficient and involves simple iterative calculations when
optimizing the parameters, using the well-known EM
procedure. As only priors take part in the maximization of the
likelihood, a uniform initialization is the most natural choice
in the absence of a priori knowledge about the importance
of the views. A single, uniformly initialized execution of
EM was adopted throughout the experimental evaluation and,
based on the satisfactory experimental results obtained for all
datasets, we can safely claim that multiple restarts for EM
can be avoided. Finally, the employment of the method for
multiview feature space clustering is straightforward.

The proposed framework has been tested on several diverse
datasets and compared with the multiview CMM [10] as well
as with the single-view CMM [12] (applied to each individual
view and the concatenated view) and also with the method of
[5] that clusters the projections obtained by kernel CCA across
the views. In general, the results verify the superiority of the
weighted multiview CMM. Its performance is constantly the
best for the noisy versions of the synthetic datasets. When
no noise is present in the synthetic data, it is matched only
by the multiview CMM. This is expected, as all views are
approximately of the same quality and therefore the impact of
weights is minimal. Also, experiments with varying amount of
noise on the views showed that the weights assigned to them
are in direct association with their noise level. For the real
datasets, our method is ahead for most of the cases, especially
for βv = α∗βv

0 . Importantly, it has proven superior to the
kernel CCA-based clustering scheme [5] in general (it is only
worse for WebKb when βv = βv

0 and for Intad when βv = βv
0

and kernel k-means is not applied). All the above indicate that
our algorithm is a worthy addition to the existing literature.

Overall, the experiments have shown that multiple views
are beneficial in identifying good partitions, particularly if the
views participate with different weights. Also, the proposed
algorithm produces robust high-quality clusters under different
settings. Moreover, it has been demonstrated that the concate-
nation of the representations is not an effective strategy and
that the success of fine-tuning the solutions of the CMM-based
methods with kernel k-means is dataset-dependent.

Before concluding this paper, we provide some more dis-
cussion regarding the usefulness of multiple views and the
applicability of our method. A typical setting where we gain
advantage from our multiview approach is when there is a
majority of views suggesting the same clustering structure,
but the single-view solutions are inferior because the views
are corrupted due to noise or due to some other reason. In
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this case, the proposed multiview algorithm is able to recover
the correct clustering structure by combining complementary
information from many views (this is the artificial experiment
described in Section V-B). Of course if the corruption in each
single view is not random, and thus the differences between
views exhibit a systematic bias, then there is not sufficient
information to recover the correct clustering structure. Hence,
combining data from multiple views may not be always
beneficial. Another case where our multiview method seems
to be effective is when there are irrelevant views suggesting no
significant clustering structure. In such a case, the algorithm
seems to be able identify such views and assign low weight
to them. From another viewpoint, the proposed method can
be considered as providing a ranking of the individual views
through the πv values. This ranking can be further exploited,
for example by keeping only the top views (even the best view
only) and applying again the clustering algorithm.

An interesting method that attempts to infer the depen-
dence relationship between two views is presented in [31] for
clustering RNA data using both proteomic and transcriptomic
expression profiles. In this approach, each view is modeled
using a different mixture model, but the two mixture mod-
els are “coupled” in the sense that we define a joint prior
distribution over both sets of components. This joint prior
distribution allows for solutions ranging from the completely
independent to the totally dependent case and is inferred from
the data when training the mixture models. It is clear that our
method in its current form is not able to explicitly model the
dependence relationship between the views. However, it is not
clear whether the coupled mixture model approach mentioned
previously can be used for more than two views.

In our future paper, we plan to thoroughly investigate the
application of the weighted multiview CMM into multiview
feature space clustering and compare it to other multiview
approaches. In addition, fine-tuning the returned clusters with
techniques other than kernel k-means is in our plans. Further-
more, we believe that the idea of weighted views can be further
exploited in different ways, either by inventing new algorithms
or by modifying existing ones. Another interesting research
direction is the development of learning frameworks that
simultaneously perform clustering and classification in such a
way that these two tasks complement each other, as suggested
in [32], in the case of multiply represented data. Finally, cluster
extraction for multiview instances using self-organizing maps
(SOMs) is in our plans, for example by exploiting the SOMs’
knowledge of the data topology as in [33].

APPENDIX A
PROOF OF THE EM ALGORITHM FOR WEIGHTED

MULTIVIEW CMMS

For clarity, we will restate here all mathematical quanti-
ties that are necessary for our proof and explicitly declare
the parameters they depend upon. Given a dataset X =
{x1, x2, . . . , xN }, where xi = {

x1
i , x2

i , . . . , xV
i

}
, xv

i ∈ �dv

the distribution of our mixture model is

F (x; �) =
V∑

v=1

πv Qv
(

xv ; {q j
}N

j=1

)
, xv ∈ �dv

(17)

where

Qv (xv ; {q j
}N

j=1) =
N∑

j=1

q j f v
j (xv ),� =

{{
πv

}V
v=1 ,

{
q j

}N
j=1

}

πv ≥ 0,

V∑

v=1

πv = 1, q j ≥ 0,

N∑

j=1

q j = 1.

Note that the exponential family distributions f v
j (xv ) are

independent of the parameters �. Our target is to maximize
the log-likelihood (18) of the dataset X under the mixture
model distribution F (x; �), w.r.t. the parameters �

L (X; �) =
N∑

i=1

log
V∑

v=1

πv Qv (xv
i ;

{
q j

}N
j=1). (18)

Let {X,Z} be the complete dataset, where Z =
{z1, z2, . . . , zN } contains the latent variables indicating the
mixture component responsible for generating each instance,
i.e., zi ∈ {1, 2, . . . , V }. It must be stressed that the zi values
are not known in practice. Now we will analytically prove
each step of the EM process [28].

From our model the next probabilities directly follow

P(zi = v; �) = πv (19)

P(x i |zi = v; �) = Qv
(

xv
i ;

{
q j

}N
j=1

)
. (20)

E-step: This step uses the current parameter values �(t) to
find the posteriors of the latent variables P(zi = v|xi ; �(t)),
by applying the Bayes’ theorem

P
(

zi = v|xi ; �(t)
)

= P
(
zi = v; �(t)

)
P
(
xi |zi = v; �(t)

)

P
(
xi ; �(t))

=
πv(t)Qv

(
xv

i ; {q(t)
j }N

j=1

)

∑V
v=1 πv(t)Qv

(
xv

i ; {q(t)
j }N

j=1

) . (21)

M-step: This step calculates the expectation of the complete
dataset log-likelihood (22) under the current latent variables
posterior distribution, evaluated for some general parameter
value �

Q(�; �(t)) =
N∑

i=1

< log P(zi , xi ; �) >
P
(

zi |xi ;�(t)
)

=
N∑

i=1

V∑

v=1

[
P
(

zi = v|x i ; �(t)
)

× log (P(zi = v; �)P(xi |zi = v; �))
]

=
N∑

i=1

V∑

v=1

[
P
(

zi = v|x i ; �(t)
)

× log
(
πv Qv

(
xv

i ;
{
q j

}N
j=1

))]

=
N∑

i=1

V∑

v=1

P
(

zi = v|x i ; �(t)
)

log πv

+
N∑

i=1

V∑

v=1

P
(

zi = v|x i ; �(t)
)

log

⎛

⎝
N∑

j=1

q j f v
j (xv

i )

⎞

⎠ .

(22)
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Subsequently, it maximizes this expectation to get a new
estimate for the parameters, taking into account any imposed
constraints. The constrained expectation is given by (23),
where λ and μ are Lagrange multipliers

Qcon

(
�; �(t)

)
= Q

(
�; �(t)

)

+ λ

(
V∑

v=1

πv − 1

)

+ μ

⎛

⎝
N∑

j=1

q j − 1

⎞

⎠ .

(23)

We begin by optimizing (23) w.r.t. πv , by setting the
corresponding derivative equal to zero

∂Qcon
(
�; �(t))

∂πv
= 0 ⇒

N∑

i=1

P
(
zi = v|xi ; �(t))

πv

+ λ = 0

⇒ −λπv =
N∑

i=1

P
(

zi = v|x i ; �(t)
)

.

(24)

Summing over v and making use of the constraint∑V
v=1 πv = 1, we obtain

−λ

V∑

v=1

πv

︸ ︷︷ ︸
=1

=
N∑

i=1

V∑

v=1

P
(

zi = v|x i ; �(t)
)

︸ ︷︷ ︸
=1

⇒ λ = −N. (25)

Using (25) to eliminate λ in (24) and rearranging gives the
new estimation

πv(t+1) = 1

N

N∑

i=1

P
(

zi = v|xi ; �(t)
)

.

The maximization of (23) w.r.t. q j , by setting the corre-
sponding derivative equal to zero, follows:

∂Qcon
(
�; �(t))

∂q j
= 0

⇒
N∑

i=1

V∑

v=1

P
(

zi = v|xi ; �(t)
) f v

j (xv
i )

∑N
j ′=1 q j ′ f v

j ′(xv
i )

+ μ = 0.

(26)

By multiplying both sides of (26) with q j and then summing
over j , together with the constraint

∑N
j=1 q j = 1, gives

−μ

N∑

j=1

q j

︸ ︷︷ ︸
=1

=
N∑

i=1

V∑

v=1

P
(

zi = v|xi ; �(t)
) N∑

j=1

q j f v
j (xv

i )
∑N

j ′=1 q j ′ f v
j ′(xv

i )
︸ ︷︷ ︸

=1
︸ ︷︷ ︸

=1

⇒ μ = −N. (27)

Using (27) to eliminate μ in (26) and rearranging, we get

q j = q j

N

N∑

i=1

V∑

v=1

P
(

zi = v|xi ; �(t)
) f v

j (xv
i )

∑N
j ′=1 q j ′ f v

j ′(xv
i )

.

(28)

Since we cannot solve analytically for q j in (28), we must
resort into iteratively performing updates on q j during the
M-step, before we proceed to the next EM iteration. That is the
reason for writing t ′ for the new estimations in the following
equation, instead of t

q(t ′+1)
j = q(t ′)

j

N

N∑

i=1

V∑

v=1

P
(

zi = v|xi ; �(t)
) f v

j (xv
i )

∑N
j ′=1 q(t ′)

j ′ f v
j ′(xv

i )
.

APPENDIX B
PROOF OF THE ASSIGNMENT STEP FOR WEIGHTED

MULTIVIEW CMMS

The weighted multiview CMM represents all instances as
possible exemplars, since each view’s CMM has N compo-
nents, centered at the corresponding instances. Viewing our
model as a mixture model, for a given parameter value � an
instance xi is softly assigned to the j th component (cluster)
with probability P(ci = j |xi ; �), where ci ∈ {1, 2, . . . , N}
indicates the CMM component responsible for generating
xi . Apparently, the value for ci is unknown in practice. By
applying Bayes’ theorem, we write

P(ci = j |xi ; �) = P(ci = j ; �)P(x i |ci = j ; �)

P(xi ; �)

= P(ci = j ; �)P(x i |ci = j ; �)
∑V

v=1 πv Qv
(

xv
i ;

{
q j

}N
j=1

) . (29)

For our model it holds that

P(zi = v|ci = j ; �) = P(zi = v; �) = πv , (30)

P(ci = j ; �) = P(ci = j |zi = v; �) = q j , (31)

P(xi |zi = v, ci = j ; �) = f v
j (xv

i ). (32)

The second nominator term with the help of (30) and (32)
is estimated as

P(x i |ci = j ; �) =
V∑

v=1

[P(x i |zi = v, ci = j ; �)

×P(zi = v|ci = j ; �)]

=
V∑

v=1

πv f v
j

(
xv

i

)
. (33)

Substituting (31) and (33) into (29), we obtain

P(ci = j |xi ; �) = q j
∑V

v=1 πv f v
j

(
xv

i

)

∑V
v=1 πv Qv

(
xv

i ;
{
q j

}N
j=1

) . (34)

Note that the above probability is used in (14) for those
components whose corresponding instances are selected as the
exemplars that are representing each of the M clusters.
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